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Fixed-Boundary Octagonal Random Tilings:
A Combinatorial Approach

N. Destainville,1 R. Mosseri,2 and F. Bailly3

Received March 6, 2000

Some combinatorial properties of fixed boundary rhombus random tilings with
octagonal symmetry are studied. A geometrical analysis of their configuration
space is given as well as a description in terms of discrete dynamical systems,
thus generalizing previous results on the more restricted class of codimension-
one tilings. In particular this method gives access to counting formulas, which
are directly related to questions of entropy in these statistical systems. Methods
and tools from the field of enumerative combinatorics are used.

KEY WORDS: Random tilings; generalized partitions; configurational
entropy; discrete dynamical systems; Young tableaux.

INTRODUCTION

The experimental discovery of quasicrystalline alloys(1) led to extensive
work on space tilings over the last 15 years, as it became clear that quasi-
periodic, and not only periodic, structures could play important role in
solid state physics. Indeed, the atomic structure of the highest quality
quasicrystals has been found to follow closely the 3-dimensional
icosahedral analogues of the celebrated pentagonal Penrose tilings.(2)

Among the many questions that are still open in this field, the origin of
their stability is one of the mostly highly debated. Physical explanations
range from an electronic stabilization mechanism (refinements on the old
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Hume�Rothery approach) to an original entropic stabilization, allowed by
specific phason modes which can be generated in quasiperiodic tilings. Our
purpose here is not to discuss the relative merits of the different mechanisms,
but to analyze in detail the combinatorial problems associated with config-
urational entropy in random tilings.

This paper follows a previous one(3) in which the general framework
was introduced, as well as specific results concerning codimension-one
tilings. The d-dimensional random tilings of interest are made of rhombi
(d=2) or rhombohedra (d=3), or even higher dimensional analogues.
These tilings are projections onto a d-dimensional Euclidean space of a
d-dimensional faceted membrane cut into a D-dimensional hypercubic
lattice (D>d ). The ``codimension'' of a tiling is the difference D&d, and
the tiling is said to be of type D � d. In ref. 3, we discussed the codimen-
sion-one case for tilings with specific (fixed) boundary conditions. This
allows us to write a one-to-one correspondence between tilings and com-
binatorial objects, called partitions. We built a geometrical description of
the partition configuration space in terms of integral points in a high
dimensional space, the entropy being computed from the integral volume
of a specific convex polytope in that space. The occurrence of multiplicative
and additive formulas for this volume was analyzed in detail, and given
a simple geometrical meaning in the latter case in terms of a simplicial
decomposition of the convex polytope.

The aim of the present paper is the analysis of random tilings of higher
codimension, starting with the simplest 4 � 2 case. Studying these cases is
of direct importance in the context of quasicrystal physics, since all the
quasiperiodic tilings encountered in this field are of codimension greater
than one (5 � 2 for the pentagonal Penrose tiling, and 6 � 3 in the
icosahedral case). Tilings of type 4 � 2 correspond to the so-called
octagonal family, which was also observed in concrete alloys.(4) Although
they are the simplest, ``octagonal'' random tilings already present most of
the difficulties which, up to now, have forbidden the derivation of exact
results for the large class of random tilings derived from hypercubic
tilings.(5) Note that exact results exist (for the entropy) for other kinds of
tilings, such as the square�triangle tiling, (6, 7) rectangle�triangle tilings, (8, 9)

or large codimension tilings.(10) Note however that the present point of
view does not apply to the two first examples since there exist no partition
representation for such tilings.

Our analysis for the 4 � 2 tilings follow from a generalization of the
simple partition problem, valid in case of codimension one, to an iterated
partition problem, which was proposed earlier, (11) and has already led to
some preliminary numerical results. Here we describe the intricacy of the
configuration space, which is no longer convex ``as a whole,'' but remains
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convex by parts. We show that despite its complexity, some exact but par-
tial enumerative results can be obtained, although we must stress that the
ultimate goal��an exact formula for the entropy��was not obtained and
seems out of reach for the moment. We nevertheless believe that the present
analysis is an important step in at least two directions: we give a very
precise description of the configuration space and its simplex decomposition
and we point out several very closely related problems in combinatorics,
like the enumeration of sorting algorithms (Appendix B).

The paper is organized as follows. Section 1 recalls some older results
and definitions, in particular the concept of de Bruijn lines and faceted
membranes, and the bijection between standard partitions and codimension-
one tilings. Section 2 focuses on higher codimension tilings, by introducing
``generalized'' partitions, and describing the particular structure that is
inherited by the configuration space. Its properties in terms of local
rearrangements of tiles (flips) are analyzed in detail. In Section 3, we discuss
the decomposition of the configuration space into normal simplices, and we
show the latter can be characterized thanks to a ``descent theorem.'' This
allows us to compute new enumerative formulas which were inaccessible by
``brute-force'' methods; these formulas are displayed in Section 4.

Even though this paper focuses on two-dimensional tilings and more
precisely on octagonal ones, some results can easily be generalized to
higher dimensional systems. The state of the art in the D � d cases is briefly
discussed in Appendix D.

1. DEFINITIONS AND KNOWN RESULTS

In this paper we consider 2-dimensional tilings of rhombic tiles which
fill a region of the Euclidean space without gaps or overlaps. The standard
method for generating such structures consists of a selection of sites and
tiles in a 4-dimensional lattice according to certain rules, followed by a pro-
jection onto the 2-dimensional subspace along a generic direction. We then
say that we have a 4 � 2 tiling problem, or an octagonal one, in reference
to the sub-class of ideal quasiperiodic Ammann tilings which have octago-
nal symmetry. The above procedure is also known as the ``cut-and-project''
method.(12�14) By construction, the so-obtained rhombic tiles are the pro-
jections of the 2-dimensional facets of the 4-dimensional hypercubic lattice.
There are 6 different species of tiles, two squares and four 45 degree rhombi.
Figures 1 and 11 show examples. In the cut-and-project language the
difference between the higher and the lower dimensions is called the tiling
codimension. In this case it is equal to 2.

We first recall some definitions and results which will prove to be use-
ful throughout this paper. These definitions are given in a slightly more
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general context than the octagonal case. The higher dimension will be
denoted by D and the lower one by d.

1.1. De Bruijn Grids and Directed Membranes

Firstly, it should be mentioned that there exist two related classes of
objects which can be put in one-to-one correspondence with random
tilings: de Bruijn grids on the one hand, and directed membranes on the
other hand.

De Bruijn grids(15, 16) are dual representations of tilings which can be
useful to state or prove some results concerning tilings. There are a great
number of publications dealing with these grids in the scientific literature
(for example, see refs. 17 and 18), therefore we shall not give a complete
presentation of these objects. Instead we shall give them an intuitive defini-
tion in the case of two-dimensional tilings. De Bruijn grids are made up of
lines, the so-called de Bruijn lines, which are also called ``worms.'' These
lines join together the middles of opposite edges of rhombic tiles. Since the
tiles are rhombi, it is always possible to extend these lines through the
tiling up to the boundary. Such lines are displayed in Fig. 1. Any tile is
crossed by two lines. There is no triple intersection point (condition of
regularity). On the other hand, there are lines which can never intersect,
even in an infinite tiling. They join rhombus edges of the same orientation,
as illustrated in Fig. 1. We say that these lines belong to the same family.
A family is in correspondence with an edge orientation. In a D � 2 tiling,
there are D edge orientations and therefore D families of de Bruijn lines.

The relevant object here is not the grid itself but the underlying inter-
section topology, which defines the tiling: a grid can be directly read on
a tiling by joining together the middles of opposite edges, but it can

Fig. 1. A patch of octagonal (4 � 2) tiling. Some worms (de Bruijn lines) are represented.
There are 4 families of worms. We have only drawn lines out of one of them (grayed).
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afterwards be continuously deformed provided no triple point appears in
the process. This grid and the tiling are said to be dual. In the following,
we will sometimes distinguish between the terms ``worms,'' which are
sequences of rhombi of a tiling, and ``de Bruijn lines,'' which are elements
of a grid in an abstract grid space, with no underlying tiling any longer.

Conversely, it can be proven that, given such a grid, it is possible to
build a unique tiling, the de Bruijn grid of which is identical to the grid
under consideration.(15, 16, 18)

Two lines of two different families can but need not intersect. A grid
where all lines of all families intersect is said to be complete. In this case,
to insure the existence of all intersections, we impose that, ``far'' from the
intersection region, the lines are perpendicular to vectors ui , one per family.
The lines of a given family are therefore parallel at the infinity.

Directed faceted membranes are representations of tilings in hypercubic
lattices of higher dimensions, which have been developed to study random
tilings in parallel with the partition method (see below).(19, 11, 20, 3, 21, 22)

They are the generalization of one-dimensional directed walks (or polymers)
in hypercubic lattices. This point of view is closely related to the cut-and-
project method. Therefore we shall only give a brief presentation of these
membranes. The main idea is that a D � d random tiling can be lifted as
a d-dimensional non-flat structure embedded in a D-dimensional space.

This structure is a continuous membrane made of d-dimensional facets
of the ZD hypercubic lattice. When this membrane is projected along the
suitable direction, the projections of these facets are precisely the tiles the
tilings are made of; its continuous character guarantees the absence of gaps
in the so-obtained tiling. Such a membrane is said to be directed to
emphasize the fact that its projection does not create any overlap. For
example, Fig. 2 displays a 3 � 2 tiling, which can also be seen as a 2-dimen-
sional non-flat directed membrane embedded in a cubic lattice. To get a
tiling, this membrane must be projected along the (1, 1, 1) direction of the
cubic lattice. This point of view can be generalized to arbitrary dimensions
and codimensions. This correspondence is always one-to-one.

1.2. Partitions in Codimension One

It is possible to derive from this membrane representation a coding of
random tilings by combinatorial objects called ``partitions.''(19, 20, 3, 21)

This point of view is easily understood when looking at Fig. 2: the
membrane can be seen as a stacking of unit cubes in 3 dimensions and an
integral height (the number of cubes) can be assigned to each of the kl
columns of this stacking, resulting in a k_l array containing integers. Since
the original membrane is directed, these numbers are decreasing in each
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Fig. 2. 3-dimensional representation of a 3 � 2 tiling.

row and in each column of this two-dimensional array. This latter array is
called a plane partition and each integer a part. In this representation, the
integer p is called the height of the partition. It is the upper bound of each
part. There is a one-to-one correspondence between such partitions and
membranes embedded in a k_l_p piece of cubic lattice. There is a straight-
forward generalization of this point of view to D+1 � D membranes and
D-dimensional partitions (called hypersolid partitions), which are families of
integers arranged in D-dimensional arrays, decreasing in each direction (for
more complete details, see ref. 3, Sections 2.1 and 2.2).

In the following section, we generalize this partition point of view
to any codimension tilings, which enables us to build their configuration
space. This general point of view was only briefly tackled in previous
refs. 11, 20, and 3. It was developed and formalized in ref. 21.

2. HIGHER CODIMENSIONS TILINGS

In this section, we show how it is possible to code octagonal tilings,
or more generally D � d tilings, as generalized partitions, that is families of
integral variables, but living on structures more complex than the previous
rectangular arrays. These structures will turn out to be the dual graphs of
relevant rhombus tilings.

2.1. Generalized Partitions

Our goal in this section is to prove that D � d tilings can also be
coded by ``generalized partitions on (D&1) � d tilings.'' Let us explain
what this terminology means.
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Fig. 3. A simple example of directed graph. It defines a partition problem. The associated
partition problem has 5 variables, which are related by: x1�x2 ; x2�x3 ; x2�x4 ; x3�x5 ;
x4�x5 .

Generally speaking, we define a partition problem as a family of K inte-
gral variables, denoted by x1 , x2 ,..., xK , placed at the vertices of a directed
graph, so that any two variables placed at two adjacent vertices satisfy an
order relation in agreement with the orientation of the edge between those
vertices.4 The underlying directed graph is called the base of the partition
problem. To simplify, we shall consider that all order relations are weak
(xi�xj ). The integral values are between 0 and an integer p, called the
height of the partition problem. A solution of this problem is called a parti-
tion, of height p. The integral variables xi are called the parts. Figure 3
displays an example. In ref. 3, we mainly studied hypersolid partitions, the
graph of which is equivalent to a piece a hypercubic lattice, in the context
of codimension-one partition problems (see above, Section 1.2).

To introduce the tiling coding by partitions, we shall work in the grid
representation. We focus here on the D � 2 case (the presentation of the
general D � d case would require some more definitions and refinements.
The interested reader will refer to refs. 21 and 23; see also Appendix D). Let
us consider a D � 2 grid. We single out a family of lines, which can be
chosen as the D th one without loss of generality. It contains kD de Bruijn
lines. The D&1 remaining families define a new grid. We call it a subgrid
of the first one. Our goal is now to build a partition on this subgrid that
codes the initial tiling: a part will be attached to each vertex of this subgrid.

Firstly, we need to introduce the so-called interline indices. Since they
do not intersect, the kD singled out lines divide the plane in kD+1
domains. These domains are unambiguously labeled from 0 to kD in the
simplest way: two adjacent domains are labeled by two successive numbers
which are increasing in the direction of uD (as defined in Section 1.1). Now
the value of the part attached to a subgrid vertex is simply equal to the
interline index of the domain in which this subgrid vertex lies. The maxi-
mum height of these parts is kD .

There is a more simple way of characterizing the order between these
parts: since a de Bruijn line of the subgrid is transverse to all the lines of
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the D th family, the parts on this line are ordered in the same direction as
the interline indices. Therefore we have defined a ``canonical'' order on
every subgrid line. We say that we have ordered those de Bruijn lines. By
convention, we chose those lines to be ordered in the direction of decreas-
ing parts (we insist on this point because it is a source of confusion). Now,
since any two adjacent vertices of the subgrid are joined by such a line, we
have ordered any two parts. Therefore we have defined on this subgrid a
partition problem of height kD . To sum up, we have coded any D � 2 grid
as a pair: a D&1 � 2 subgrid and a partition on it.

Conversely, given such a pair, the D � 2 grid from which this pair
comes can be easily re-constructed. One must add the D th family of lines
in such a way that all the vertices of the subgrid lie in the interline, the
index of which is equal to the part attached to this vertex. The constraints
on the parts insure that we actually obtain a D � 2 de Bruijn grid.

In conclusion, we have derived a one-to-one mapping between D � 2
grids and partitions on D&1 � 2 subgrids, the parts being suitably ordered
on oriented de Bruijn lines. A more mathematical formulation, related to
this work, can be found in ref. 23.

This mapping can be translated in the tiling (or directed membrane)
language: the generalized partitions can be defined on the suitably oriented
dual graphs of the corresponding D&1 � 2 tilings. For short, we call them
``partitions on tilings.''

Figure 4 provides an example of 4 � 2 tiling seen as a partition on a
3 � 2 tiling. The 3 � 2 tiling has been slightly deformed to anticipate the
next step of the process. Note that parts are ordered on each de Bruijn line
(or worm). Once the partition has been chosen, zones where parts are
equal are separated by bold lines, which are ``opened'' to form worms
(shaded) of width 1. This step is the manifestation in the tiling representa-
tion of the fourth de Bruijn family.

To conclude this paragraph, we shall say that a D � d tiling problem
can be studied as a collection of partition problems on a set of (dual graphs

Fig. 4. A 4 � 2 tiling coded by a generalized partition on a 3 � 2 tiling. Left: the inequalities
between the tiles. Right: a partition of height 2 and the corresponding 4 � 2 tiling. It fills an
octagon of sides 2, 2, 2, 1.
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of ) D&1 � d tilings. Even though we have only proved this point in the
4 � 2 case, the demonstration can be generalized.(21) Practically, to build a
D � d tiling, one can iterate a partition-on-tiling process. The first step is
simply a codimension-one partition on a d-dimensional hypercubic array.
It generates a d+1 � d tiling. The next steps increase D by one each.
Therefore there are D&d steps.

As compared to usual random tilings, partition-generated ones have
specific polygonal boundary conditions. For example, the tiling in Fig. 2
have a hexagonal boundary. In the case of 4 � 2 tilings, the polygon is an
octagon of sides k1 , k2 , k3 and k4 (see Fig. 4). More generally, such tilings
have zonotopal 5 boundaries. Note that they are dual to complete de Bruijn
grids. It should also be mentioned that such polygonal boundaries have a
strong macroscopic influence on tilings, which results in a lower entropy
than in free or periodic-boundary systems.(3, 22, 24, 25)

2.2. Configuration Space

In this section, we study the configuration space of partition-generated
tilings that fill a given polygonal domain.

The codimension-one case has already been studied in detail:(3) the
configuration space C consists of all the integral coordinate points (integral
points) lying into the convex polytope defined by the system of inequalities
related to the partition problem. This configuration space is embedded into
an Euclidean space of dimension K, where K is the number of parts of the
partition problem. Two points are neighbors in C (i.e., they are linked by
an edge of the underlying hypercubic lattice) if they only differ by a local
rearrangement of tiles which is usually called an (elementary) flip(3) (see
Fig. 5).

In this section, all the latter properties are extended to generalized
4 � 2 problems, in particular to partitions-on-tiling problems. In ref. 21,
the general D � d case is treated.

Let us consider 4 � 2 tilings which fill an octagonal region of sides k1 ,
k2 , k3 and k4 . They are described by a class of partition problems on 3 � 2
tilings inscribed in hexagons of sides k1 , k2 and k3 . These tilings will be
indexed by an integer :. They have exactly K=k1k2+k1k3+k2k3 parts.
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between vectors vi and the D-dimensional representation is specified in refs. 3 and 21.
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Fig. 5. An elementary flip (left) and its grid space counterpart (right).

Therefore each configuration space C: related to the partition problem on
: is of dimension K. Now to describe the whole configuration space of the
tiling problem, we need to make explicit how these different C: are connected
to each other.

Firstly, we need to specify how a flip in the tiling representation is
translated in the grid space. It is simply a 3-line flip, as illustrated in Fig. 5.

If the fourth family of lines has been singled out in the partitions-on-
tiling process, two cases must be distinguished:

I: either the 3-line flip does not involve any line from the fourth
family. It means that the 3 vertices involved in the flip have the same inter-
line index and that this index does not evolve during the flip. These vertices
are therefore coded by parts of same value. On the other hand, the base
tiling (i.e., the tiling dual to the 3-family subgrid) on which the partitions
are defined undergoes a flip;

II: or the flip involves a line l of the fourth family. In this case, the
3-family subgrid is not modified through the flip. The same holds for the
base tiling on which the partitions are defined. On the other hand, let us
consider the only vertex S involved in the flip but which does not belong
to l. During the flip, its interline index is increased by \1. Therefore a part
(and only one) of the partition problem varies (by \1).

To sum up, a flip is translated either in a base tiling flip, without any
modification of the parts (type-I flip), or in a variation of one of the parts
without any modification of the base (type-II flip).

Let us go back to the configuration space C. Since C can be seen as
a collection of spaces C: associated with tilings :, it can be given a ``discrete
fiber bundle''6 structure, the base B of which is the configuration space of
(base) tilings :. Its fibers are the spaces C: .

Practically, suppose that B is embedded in an hypercubic array of
dimension $ and that the dimension of each fiber is K. Then the whole
space can be embedded in a lattice Z$_ZK: the first $ coordinates code the
base tilings : and the K last ones the parts on these tilings. We already
know the structure of C inside a fiber: an edge between two vertices
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Fig. 6. A 3 � 2 tiling as a domino tiling on a triangular lattice. Each tile is labeled like its
unique upward triangle.

corresponds to a type-II flip. Now, we must establish how a type-I flip con-
nects two fibers.

A type-I flip consists of a flip in the base tiling, transforming the tiling
: into :$, but which does not alter the values of the parts. In the fiber, the
K coordinates of the corresponding points are therefore unchanged. But in
the base B, : and :$ are coded by two points which differ by only one of
their $ coordinates. Thus, in C, the two tilings differ by only one coor-
dinate: they are neighbors in Z$_ZK.

However, we have omitted to deal with a subtlety in the previous
statement: so far, we have proven that two fibers are connected via a piece
of hypercubic lattice. Thus we have only proven the local hypercubic struc-
ture of the configuration space. To provide a complete proof, we need to
exhibit an extrinsic7 set of hypercubic coordinates in which every con-
figuration can be encoded and in which two neighbor tilings differ by a
single flip. As a matter of fact, we only have to specify coordinates in fibers:
the choice of coordinates in the base B is an irrelevant question. As it was
stated above, a choice of coordinates is equivalent to the choice of a tile-
labeling of a 3 � 2 base tiling. Now, as illustrated in Fig. 6, such a tiling
can be seen as a domino tiling on a triangular lattice: every tile is the union
of an upward and a downward triangle. Therefore any labeling of upward
triangles will provide a tile-labeling and therefore a set of coordinates
in each fiber. It is now clear that with such coordinates, a type-I flip
corresponds to a bond of the hypercubic lattice.

Remark. We can now derive the dimension of the hypercubic lattice
in which C is embedded:

dC =$+K=2k1k2+k1k3+k2k3 (1)
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since the dimension of the base is k1k2 and the dimension of fibers is
k1 k2+k1k3+k2k3 .

These arguments in the octagonal case can be extended by induction
to the general D � d problem, (21) at least as far as the local hypercubic
structure is concerned (see Appendix D).

Note also that, following this work, this configuration space has been
recently investigated further by M. Latapy, who detailed the nature of its
structure when it is seen as a partially ordered set, (26) in any D � 2 case.
Briefly speaking, the lattice structure in the fibers looks like that of a plane
partition configuration space (it is a ``distributive lattice''), whereas the
structure of the whole set is a bit less rich (it is a lattice, but not a dis-
tributive one).

Another interesting question concerns the connectivity of this con-
figuration space: for a given boundary, is it possible to obtain a random
tiling from any other one via a sequence of elementary flips? In the D � 2
case, the configuration space is connected for any D.(27, 28) The present
analysis provides another straightforward proof of this result: every fiber is
connected as the configuration space of a partition problem on an acyclic
directed graph since it is the convex union of normal simplices. Moreover,
the base is connected for the same reason (inductively), which completes
the proof. The general case is discussed in Appendix D.

3. DECOMPOSITION OF THE CONFIGURATION SPACE INTO
NORMAL SIMPLICES: GENERAL CASE

3.1. Simple Descent Theorem

We first recall the results of refs. 3 and 29 about generalized partitions.
The configuration space of a generalized K-part partition problem of height
p is embedded in a K-dimensional Euclidean space, the coordinates xi of
which are the parts of the problem. The configurations are coded by
integral-coordinate points (called integral points), which belong to the con-
vex polytope F[K] defined by the intersection of the hypercube (0�xi�p)
and of the cone (x i�xj ) defined by all the suitable relations between the
parts.

The key point is that this configuration space can be decomposed into
elementary volumes, the so-called normal simplices. Let (e1 , e2 ,..., eK) be the
orthonormal basis of the Euclidean space which generates the ZK lattice.
A K-dimensional simplex of vertices A0 , A1 ,..., AK is said to be normal if
there exists an integer s such that:

v each Ai is an integral point,
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v AiAi+1 is parallel to a vector eki
for any i,

v if i{ j then ki{kj ,

v &Ai Ai+1&=s for any i.

For short, we shall call such a simplex a normal simplex of side s. Its
integral volume (i.e., the number of integral points it contains) can easily
be derived: it is the binomial coefficient ( s+K

K ). But such simplices have
lower-dimensional faces in common that contain integral points, which
must not be double-counted. Therefore we must take into account a subtle
inclusion-exclusion scheme in order to count correctly the number of con-
figurations. To sum up, one must suppress j faces ( j=0,..., jmax) to some
simplices in order to avoid double-counting. If aj is the number of simplices
that lose j faces, then the number of configurations is

W( p)= :
jmax

j=0

aj \ p+K& j
K + (2)

where the maximum number of suppressed faces, jmax , depends on the
partition problem under study.

The so-called descent theorem(3) provides a prescription to characterize
the coefficients aj . To state this theorem, we need the following definition:
with each simplex of the decomposition, we can associate the sequence
(k1 ,..., kK) of indices appearing in the definition of the normal simplex.
Then the number of descents in this sequence is the number of indices such
that ki>ki+1 .

The descent theorem states that, if there exists a zero-descent simplex,
which is always true up to a re-indexing of the basis vectors,8 then a sim-
plex with j descents loses j faces. Therefore the coefficient aj in Eq. (2) is
equal to the number of simplices with j descents.

As a corollary, the number of normal simplices in the decomposition
is equal to the sum of the coefficients aj of Eq. (2).

These coefficients aj can be given a different equivalent interpreta-
tion:(3, 29) one builds a directed graph, denoted by T, with two extremal
vertices, O and S0 . A simplex of the decomposition is put in one-to-one
correspondence with maximal walks in T (i.e., going from O to S0). More
precisely, to each vertex of the graph, it corresponds a configuration of
height p=1 of the partition problem. Two configurations are neighbors if
they differ by only one part xi , which is 0 in the ``lower'' configuration and
1 in the ``higher.'' Therefore the link between the two configurations can be
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indexed by i and the descent theorem can be translated in terms of these
indices: the number of descents of a walk in the graph is defined as the
number of descents of the sequence of indices of the bonds it follows.

To sum up, in the graph T of any generalized partition problem, a step
between a vertex and one of its neighbors in a maximal walk amounts to
increasing one of the parts from 0 to 1. Therefore a maximal walk from O
to S0 amounts to a labeling of the parts, from 1 to K, which specifies in
which order they are increased from 0 to 1. O (resp. S0) is the configuration
where all the parts are equal to 0 (resp. 1).

In codimension-one D+1 � D partition problems, we have proved
that the graph T is the configuration space of the D � D&1 partition
problem on a hypercubic array of sides k1 , k2 ,..., kD&1 . (3)

In codimension larger than one, that is in the case of partition-on-
tiling problems, the parts are attached to the tiles of the D&1 � d
problem, as in Fig. 4. Therefore, to each maximal walk in the graph T, it
corresponds a labelling of the tiles, which characterizes in which order the
parts are increased by one in the walk.

For example, Fig. 8 (left) shows a tile labeling (among many others)
in the partition problem of Fig. 7 (left). In fact, the only condition on those
labelings is that when two tiles xi and x j are adjacent, if the order relation
is xi�xj , the label associated with xi is smaller that the label associated
with xj (xi is increased before x j ). In other words, these labels are ordered
on de Bruijn lines.

3.2. Decomposition in Simplices

A 4 � 2 tiling problem is a collection of generalized partition problems
on 3 � 2 tilings. On each such tiling, the descent theorem can be applied.
Therefore, the counting polynomial of the 4 � 2 problem, which is the
sum of all the individual polynomials on each 3 � 2 tiling, can also be
written

W= :
M

j=1

aj \p+K& j
K + (3)

where K is the number of tiles, independent of the 3 � 2 tiling, and M is
the greater of the integers jmax involved in the collection of partition-on-tiling
problems.

In this section, we shall prove that the above result for codimension-
one problems(3) can be generalized: the sum of the coefficients aj of the
counting polynomial W is equal to the number of maximal walks of a given
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Fig. 7. A partition problem on a 3 � 2 tiling. Left: � symbols show the order relations
between tiles. We recall that parts are canonically ordered on each worm. Right: a solution
of height p=1 and the line separating 0's and 1's. Note that this line has been extended up
to the top-left and bottom-right corners of the hexagon. As a matter of fact, this line is the
projection of a 3 � 1 tiling.

class in the related configuration space of a given 3 � 1 tiling problem. At
the end of this section, we shall give an explicit analytic expression of this
number of walks.(21) A general result concerning walks in the configuration
space can be derived in the general D � d case. However, to avoid inessen-
tial complication, we shall present it in the restricted 4 � 2 case, and in an
informal manner. A rigorous proof in the D � 2 case is given in Appendix A
and the general case is discussed in Appendix D.

Let us consider a partition problem on a 3 � 2 membrane, or, equiv-
alently, on a 3 � 2 tiling. Figure 7 (left) provides an example.

As we have seen it at the beginning of this section, the sum of the coef-
ficients aj of this (generalized) partition problem is equal to the number of
labelings of the tiles, with integers running from 1 to K, which respect the
following condition: these labels must be increasing on each oriented de
Bruijn line. Figure 8 (left) displays such a labeling in the case of the 3 � 2
tiling of Fig. 7.

On the other hand, a configuration of this partition problem of height
p=1 is characterized by the line which separates 0's and 1's on the tiling.
Figure 7 (right) shows a partition of height 1 and the corresponding line.
In Fig. 8 (right), some other such line configurations, associated with parti-
tions of height 1, are displayed. These lines are directed walks using three
kinds of elementary steps: north, west and north-west ones. The number of
steps in each direction is determined by the side lengths of the hexagonal
boundary.

Now, a walk in the space of partitions of height 1 is also a walk in the
space of these directed lines. For example, the walk of Fig. 8 (left) is
encoded into the sequence of lines of Fig. 8 (right). On the other hand, we
notice that these latter lines can be seen as projections in two dimensions
of 3 � 1 directed membranes (i.e., one-dimensional walks embedded in a
cubic lattice). These membranes lie on the same rectangular parallelepiped
as the initial 3 � 2 membrane. A walk counted by the sum of the coefficients

161Fixed-Boundary Octagonal Random Tilings



File: 822J 008316 . By:XX . Date:02:11:00 . Time:08:19 LOP8M. V8.B. Page 01:01
Codes: 2538 Signs: 1975 . Length: 44 pic 2 pts, 186 mm

Fig. 8. Left: a walk in the configuration space of the partition problem on the 3 � 2 mem-
brane encoded by a labeling of the 8 tiles of this membrane. This labeling respects the order
on the de Bruijn lines. Right: the walk in the 3 � 1 problem configuration space associated
with the left-hand-side labeling. One goes from a broken directed line to the next via a single
flip. The extremal tilings are the first and the last ones.

aj of the partition problem on this membrane is therefore also a walk in the
configuration space of a given class of 3 � 1 membranes.

To sum up, the sum of the coefficients aj of this partition problem is
equal to the number of ways of labeling the partition parts with some rules.
Such a labeling can be put in correspondence with walks in a suitable con-
figuration space of 3 � 1 tilings. And the same holds for each individual
partition problem on a 3 � 2 tiling.

Conversely, given such a walk it is always possible to reconstruct the
3 � 2 tiling it comes from, as well as the labeling on this tiling. Therefore
this walk is counted by the sum of the coefficients aj of a partition problem
on a 3 � 2 tiling, hence by the sum of the coefficients aj of the initial 4 � 2
tiling problem.

In conclusion��and we rigorously prove this result in Appendix A��
the sum of the coefficients aj of a 4 � 2 tiling problem is equal to the num-
ber of maximal walks in the configuration space of a suitably related 3 � 1
tiling problem.

Theorem. For any problem of enumeration of fixed boundary
4 � 2 tilings, the sum of the coefficients aj of the additive counting poly-
nomial

W4 � 2( p)= :
M

j=0

aj \p+K& j
K + (4)

is equal to the number of maximal walks in the configuration space of the
associated 3 � 1 tiling problem (as defined in Appendix A).

Generalizing codimension-one notions, by ``maximal walk,'' we mean
a walk between two tilings which play a singular role in the configuration
space, the so-called ``extremal'' tilings (Fig. 8). One of the properties of
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these extremal tilings is that they go in pairs and that the (Manhattan)
distance between two such configurations is a local maximum in the con-
figuration space, even in the general D � d case.(21) These tilings are
described in Appendix A and Appendix D (see Figs. 12 and 24).

In Appendix B, we explicitly calculate this number of walks in the
D � 1 configuration spaces. In particular, if A3(k, l, m) denotes the sum of
the coefficients aj of the polynomial counting the number of 4 � 2 tilings
inscribed in an octagon of sides (k, l, m, p),

A3(k, l, m)=(kl+km+lm)!
[(l&1)![2]]2

(2l+k+m&1)![2]

_
(k&1)![2] (m&1)![2] (2l+k&1)![2] (2l+m&1)![2]

(2l&1)![2] (l+k&1)![2] (l+m&1)![2]

(5)

where we have used the generalized factorial functions of order 2, as defined
in ref. 20: k![2]=>k

j=1 j !. Some properties of these functions are given in
ref. 3.

3.3. Generalized Descent Theorem

As it was done in ref. 3 in the codimension-one case, we shall now
refine the previous theorem in order to characterize among the maximal
walks those which are counted by a given coefficient aj .

In other words, we are looking for a descent theorem in any codimen-
sion. As in codimension one, we need an edge labeling in the associated
3 � 1 configuration space such that aj is the number of maximal walks
which have exactly j descents with respect to this labeling.

Now, we know that such an edge in the configuration space is in one-
to-one correspondence with a facet of a 3 � 2 tiling (the value of which
changes from 0 to 1). This two-dimensional facet also belongs to a mem-
brane attached to the rectangular parallelepiped P. Therefore it belongs to
the piece of cubic lattice bounded by P.

If we choose a labeling of all these two-dimensional facets bounded
by P, it will induce a labeling of the facets of any 3 � 2 membrane attached
to P. Such a labeling will be used to index the variables of the partition
problem on this membrane. For example, Fig. 9 displays a labeling of the
facets bounded by P, and Fig. 10 shows the induced labeling on a mem-
brane attached to P. Then, according to the descent theorem, if there exists
a zero-descent walk for this labeling, then a coefficient aj0

of this individual
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partition problem counts the number of j0-descent walks on this membrane,
and thanks to the correspondence between facets and edges, a j0-descent in
the whole 3 � 1 configuration space.

Conversely, let us consider any j0-descent maximal walk in this con-
figuration space. This walk is counted by the sum of the coefficients aj of
the partition problem on an individual 3 � 2 membrane. If there exists a
zero-descent walk on this membrane, this walk is more precisely counted
by the coefficient aj0

.
In conclusion, we are looking for a labeling of the facets which

induces, on any 3 � 2 membranes, a labeling with a zero-descent walk.
Then the number of j0-descent walks in the 3 � 1 configuration space will
be equal to the coefficient aj of the polynomial W( p). We propose such a
labeling in the following paragraph.

Let P be a rectangular parallelotope of sides k1_k2_k3 embedded in
a 3-dimensional lattice, the orthogonal basis of which is (e1 , e2 , e3) (see
Fig. 9; among all the possible choices, the hexagonal non-flat frame of the
membranes is chosen as follows: it contains the vertices (0, 0, k3) and
(k1 , k2 , 0) of P). Each facet is coded by the coordinates of its center. We
define on these coordinates an order relation O close to the lexicographic

Fig. 9. Labeling of the two-dimensional facets of a parallelepiped P of sides 3_3_1. For
any k3 larger that 1, the same labeling could be handled in the same way.
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Fig. 10. Example of labeling induced on a 3 � 2 membrane.

order, apart from a slight difference: let f1 and f2 be two facets, the center
coordinates of which are respectively (x1

1 , x1
2 , x1

3) and (x2
1 , x2

2 , x2
3). Then

v if x1
3>x2

3 then f 1O f 2.

v if x1
3=x2

3 and this value is an integer, i.e., these facets are horizon-
tal,9 then

�� if x1
2<x2

2 then f 1O f 2.

�� if x1
2=x2

2 and if x1
1<x2

1 then f 1O f 2.

v if x1
3=x2

3 and this value is a half-integer, i.e., these facets are vertical,
then

�� if x1
2<x2

2 then f 1O f 2.

�� if x1
2=x2

2 and if x1
1>x2

1 then f 1O f 2 (only this point differs from
the lexicographic order definition).

Figure 9 illustrates this point. It displays a facet labeling compatible
with the previous order relation. P has been ``exploded'' to enable a better
reading. Let us emphasize the difference between horizontal and vertical
layers.

In Fig. 10, we have represented a 3 � 2 membrane attached to P and
its facet labeling induced by the previous one. We check that this labeling
is compatible with the order on the de Bruijn lines (which are oriented
from top to bottom here). This result does not depend on the chosen 3 � 2
membrane.
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Note that the so-obtained labelings differ from those previously
defined in order to prove the hypercubic character of the configuration
space (Section 2.2).

This establishes the existence of a descent theorem in the octagonal
case of interest. It will be used in the following section to get finite tiling
enumerations.

Remark. It is natural to wonder if there exists such a result in the
general D � d case. Except the facet labeling, the same arguments hold in
this general context: if such a labeling existed, it would provide a descent
theorem. However, we have good reasons to believe that such a labeling
does not exist. Indeed its existence would mean that in the general case,
the counting polynomial can still be written W( p)=� aj (

p+K& j
K ). But we

know examples (in the 7 � 3 case) where such an expression is false (see
Appendix D). Therefore if there exists a general descent theorem, it will
have a more complex statement than the previous one.

4. ENUMERATION RESULTS

4.1. Two Exact Formulas

In ref. 28, Elnitsky provides two exact formulas for 4 � 2 tiling
enumeration, in the case where two sides of the octagon are equal to 1.

As displayed in Fig. 11, two cases must be considered, according to
whether the two sides of length 1 are adjacent or not:

W 4 � 2
r, 1, s, 1= :

a+b=r

:
c+d=s \

a+c
a +\b+c

b +\a+d
a +\b+d

b + (6)

W 4 � 2
r, s, 1, 1=

2(r+s+1)! (r+s+2)!
r! s!(r+2)! (s+2)!

(7)

The sketches of the proofs of these formulas are recalled in Appendix C.1.

Fig. 11. Two tilings of octagons of sides r, 1, s, 1 (left) and r, s, 1, 1 (right).
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In his paper, Elnitsky also says that no closed formula is known for
the first double sum. We have somewhat simplified the first formula:

W 4 � 2
r, 1, s, 1=

(r+s+1)!
r! s!(2r+1)(2s+1) _

2(r+s+1)!
r! s!

+ :
r

k=0

1
2k&1 \

r
k+\

s
k+& (8)

Since the last sum can be written in terms of a hypergeometric function

:
r

k=0

1
2k&1 \

r
k+\

s
k+= 3F2[&1�2, &r, &s; 1�2, 1; 1] (9)

this result is a ``closed'' form for the enumerating function, even though it
is not written in terms of products or ratios of simple functions.

In order to prove Eq. (8), we need the following recursion relation,
due to Brock:(30)

W 4 � 2
r, 1, s, 1&W 4 � 2

r&1, 1, s, 1&W 4 � 2
r, 1, s&1, 1=\r+s

r +
2

(10)

The sketch of the proof of this recursion relation is also given in
Appendix C.2.

If the right-side member of Eq. (8) is written as the sum of two terms,
we denote the first one by Ar, s and the second one by Br, s . Then

Ar, s&Ar&1, s&Ar, s&1=\r+s
r +

2

_1+
1&4rs

(4r2&1)(4s2&1)& (11)

by simple algebraic manipulations, and

Br, s&Br&1, s&Br, s&1

=\r+s
r + 1

(4r2&1)(4s2&1)
:
r

k=0

1
2k&1 \

r
k+\

s
k+

__(2r&1)(2s&1)(r+s+1)&r(2r+1)(2s&1)
r&k

r

&s(2s+1)(2r&1)
s&k

s &
=\r+s

r + 4rs&1
(4r2&1)(4s2&1)

:
r

k=0
\ r

k+\
s
k+

=\r+s
r +

2 4rs&1
(4r2&1)(4s2&1)

(12)
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since the last sum is equal to ( r+s
r ), which proves that our expression

satisfies relation 10. Since it also gives the expected values for r=0 or s=0,
this achieves the proof.

Note however that those two formulas do not give any relevant infor-
mation on the entropy since r and s the bigger, the most the tiling looks
like a square lattice, with two defect lines (the two worms of the two other
families) that only have a linear contribution to the entropy. Therefore the
entropy per tile vanishes when r and s tend to infinity.

4.2. Numerical Results

In Table I, we list some coefficients aj obtained via the method
exposed above: we construct the oriented graph of the configuration space
of the corresponding 3 � 1 problem and apply the generalized descent
theorem, as described in the codimension-one case in ref. 3. Its label is
attached to each (oriented) edge of the graph of this configuration space,

Table I. Coefficients a j Associated with Some Octagonal Tiling Problems

k1 , k2 , k3 a0 ; a1 ;...

2, 2, 2 20; 220; 703; 943; 566; 166; 21; 1
3, 2, 2 50; 1281; 9775; 32304; 53175; 46343; 22095; 5755; 774; 47; 1
2, 3, 2 50; 1240; 10472; 40378; 77328; 75652; 36506; 7958; 648; 18
2, 3, 3 175; 9792; 183223; 1611390; 7581596; 20313994; 31942744; 29678550; 16076840;

4906164; 794328; 62142; 2088; 24
3, 2, 3 175; 10372; 184113; 1445070; 5924665; 13826440; 19251677; 16431348; 8710059;

2861124; 569191; 65214; 3943; 108; 1
3, 3, 3 980; 119284; 4736040; 88959048; 922861456; 5735679224; 22400451966;

56586512056; 93968296600; 103217016568; 74801020694; 35369632364;
10693166706; 2003702920; 222619576; 13801976; 439638; 6272; 32

3, 3, 4 4116; 990574; 75291817; 2672974232; 52557540678; 628628119744;
4845859698991; 25007135636872; 88641414434386; 219565301033744;
384158453148998; 477331133707230; 421472964232612; 263431654905354;
115559997005453; 35098071282418; 7238626577471; 987285691504;
85977846450; 4564265102; 138792310; 2208928; 15936; 40

3, 4, 4 24696; 11185183; 1658701257; 117639867825; 4696728888239;
115554431503049; 1855639954964533; 20237165017326054;
154261056214441072;...

4, 4, 4 232848; 211868010; 59911555328; 7889440518518; 578616346951691;
26140019431942187; 775751817756005455; 15811577667366075305;...

4, 5, 5 16818516; 52683466776; 49453853710872; 21112489152560570;
4940628646460445115; 704860523557345706986; 65676322673579106872954;...

5, 5, 5 267227532; 1658888888852; 2898208633474138; 2212967878070760376;
903353585201401013350; 221402610595368245987868;...
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Table II. Some Tiling Enumerations Computed with the Previous Coefficients
and the Corresponding Entropies per Tile. We Have Only Listed Diagonal

Entropies. The Number of Rhombi Is Given in Column 3

k1 , k2 , k3 , k4 Number of tilings * tiles Entropy

1, 1, 1, 1 8 6 0.34657
2, 2, 2, 2 5383 24 0.35796
3, 3, 3, 3 273976272 54 0.35979
4, 4, 4, 4 1043065776718923 96 0.36022
5, 5, 5, 5 296755610108278480324496 150 0.36031

as prescribed in the generalized descent theorem scheme, and the coef-
ficients aj are computed recursively: if aj (v) is the number of walks in the
configuration space from the extremal vertex O to the vertex v, with j
descents, then the sequence (aj (v)) j=0,..., jmax

only depends on the vertices
under v in the graph. Then the coefficients we are interested in are equal
to aj (S0), where S0 still denotes the extremal vertex associated with O.

One checks that the corresponding sums � aj are in agreement with
those computed in Section 3.2 (Eq. (5)). Note that in Table I, the symmetry
aj=aM& j observed in codimension one is lost (M is the maximum number
of descents). Indeed, this symmetry remains valid for each partition on til-
ing problem, but the maximum number of descents depends on the base til-
ing.

The derived counting polynomials provide enumerations of tilings, as
well as entropies per tile10 of finite-size systems. Some examples are listed in
Table II. The interest of the method is that it gives access to enumeration
of tilings for arbitrarily large k4 , if k1 , k2 and k3 are fixed. Moreover it is
technically much easier to implement than a brute force enumeration
method, and very much faster as well, in terms of computational time.

Even though it is not possible to make any reliable fit with few finite-
size values, it is rather clear from the available data that the diagonal11

entropy converges rapidly to its limiting value. Note that in the 2 � 1 case
as well as in the 3 � 2 one, where exact enumeration formulas are known
(see ref. 3 for a review, for instance), the asymptotic behavior of the finite-
size corrections to the entropy can be derived: they decrease like log(k)�k.
Fitting such a behavior with the numerical values, we get a limiting
diagonal entropy close to S=0.36(1). The precision of this entropy cannot
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be refined beyond the second digit with the small amount of values we have
got.

Previous entropy calculations via transfer-matrix methods where
derived concerning octagonal tilings, but in the case of periodic or free
boundary conditions, (5) leading to a limiting value S=0.434. The difference
between both results is due to the strong macroscopic effects of boundary
conditions in those random tiling systems.(19, 22)

CONCLUSION

Among the large class of random tilings, this paper is devoted to fixed
boundary codimension-two tilings of rhombi (``octagonal tilings''). We
have established combinatorial properties of the configurational spaces of
such tilings, extending results previously derived in the more restricted case
of codimension-one tilings. Octagonal tilings are more closely related to
real quasicrystals than are codimension-one tilings. Moreover, many of the
results presented here can (at least partially) be extended to two-dimen-
sional tilings of rhombi of any codimension, and even to any-dimensional
tilings.

The present analysis provides additive formulas which simplify signifi-
cantly the enumeration of finite-size tilings. In a geometrical viewpoint,
these formulas come from a decomposition of the configuration space into
elementary volumes, called normal simplices. The number of configurations
in each of these simplices is known. But it is necessary to take into account
interfaces between those volumes to avoid multiple counting, which is
achieved by the generalized descent theorem. The number of simplices in
this decomposition is also derived in the general two-dimensional case:
these simplices are put in one-to-one correspondence with a class of paths
in a configuration space of tilings of same codimension, but smaller dimen-
sion, which can be counted.

The new insight on the sets of octagonal tilings provided by this
analysis will be useful to study topics such as diffusion in these configura-
tion spaces, which is directly related to the rate of convergence of flip
dynamics towards the equilibrium distribution. This problem has already
been treated in the case of hexagonal tilings, (31�34) but is still an open ques-
tion in higher codimension plane tilings. Significant progress will be pub-
lished separately. It would also be of high interest to understand how the
introduction of energetic interactions between tiles is translated in the con-
figuration space and how it modifies the dynamics. Indeed, a realistic
model of quasicrystals requires one takes into account energy, which can
be in first approximation modeled by tile interactions; glass-like slow
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dynamics are likely to appear in this case, (35, 36) even though no glassy
behavior has been explicitely exhibited in rhombus tilings yet.(37, 38)

APPENDIX A. COEFFICIENTS aj AND MAXIMAL WALKS IN
CONFIGURATION SPACES

We consider D � 2 fixed boundary tilings, described as generalized
partitions of height kD on D&1 � 2 membranes or tilings. To each such
membrane is attached a partition problem, and therefore a set of coef-
ficients aj . The sum of the coefficients aj of the counting polynomial of all
these D � 2 tilings is equal to the sum, running over all the relevant
D&1 � 2 membranes, of the sums of the coefficients aj on each such
membrane.

Consider first a D&1 � 2 membrane, denoted by M, and a partition
problem on M. According to results of Section 3.1, the sum of the coef-
ficients aj of this partition problem is equal to the number of walks, in the
configuration space of the partition problem of height 1, between two
extremal D&1 � d configurations, O and S0 . All the parts are of O and S0

are respectively equal to 0 and 1. Such a walk is denoted by a sequence
O=P0 , P1 ,..., PK&1 , PK=S0 .

We use again the grid representation of tilings and the formalism
introduced in Section 2.1: the partition problem on M is seen as a partition
problem on the vertices of the corresponding grid (which has D&1
families), G, called the subgrid of the problem. The vertices of G are
ordered on each de Bruijn family. A partition Pi of height p=1 consists of
marking each vertex of G by a 0 or a 1. The vertices marked with a 0 and
those marked with a 1 are separated by the only de Bruijn line of the D th
family of the original grid. This latter line is denoted by SD . Our goal is
now to encode SD by a D&1 � 1 grid, or in other words by a D&1 � 1
tiling.

Now the section of the subgrid G by SD is precisely of this type.
Indeed, if we identify the intersection of a de Bruijn line of the ki th family
and SD with a i-tile, this latter section is a sequence of tiles, k i of each
family i, that is to say a D&1 � 1 tiling.

Therefore the sequence (Pi ) is coded by a sequence (Ci ) of such
tilings, as illustrated in Fig. 12. Since the same argument can be applied to
any subgrid G of this D � d problem, all the walks counted by the sum of the
coefficients aj of the counting polynomial can be seen as such sequences (Ci ).

It is now rather clear that all the configurations C0=O and CK=S0

are the same for the partition problems on all subgrids G: they are the two
configurations where all the tiles of a same family are adjacent and where
the families are ordered according to the grid configuration at infinity,
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Fig. 12. Left: A D&1 � 2 grid and the successive sections Ci by a line of the D th family.
Each section can be seen as a D&1 � 1 tiling where the different species of tiles are repre-
sented by dots of different colors. Two successive sections differ by a single flip, that is the
exchange of two tiles. In this example, D=4, k1=3, k2=1 and k3=2. Right: The corre-
sponding labeled dual tiling.

which does not depend on G, but only on the vectors ui . These two con-
figurations will be denoted by Cmin and Cmax , as in Fig. 12. Likewise, two
successive tilings of a sequence, Ci and Ci+1 , only differ by a tile flip, that
is the exchange of two adjacent tiles, since the two successive sections
``surround'' a single vertex of G. And there is a natural order between two
successive such tilings: considering how tiles are ordered on Cmin and Cmax ,
it is clear which tiling should come first in the sequence.

Conversely, let us establish that such a sequence (Ci ) of D&1 � 1
tilings, going from Cmin to Cmax , and where two successive tilings only
differ by a single flip and respect the above order, contributes towards the
sum of the coefficients aj of a unique partition problem on a D&1 � 2
membrane��and therefore towards the sum of the coefficients aj of the
global D � 2 problem. The proof is rather straightforward and is also
illustrated in Fig. 12: considering two successive tilings, Ci and Ci+1 , the
two dots that represent the two flipping tiles of different families are joined
by two crossing segments; the so-obtained vertex is labelled by i+1; all the
other tiles are joined by horizontal segments. Then one reconstructs a com-
plete D&1 � 2 grid, the vertices of which are labeled by numbers increas-
ing on each de Bruijn line. This is precisely the kind of object counted by
coefficients aj .

Note that all the walks counted by � aj have the same length, since all
the subgrids G have the same number of intersections.

APPENDIX B. NUMBER OF MAXIMAL WALKS IN A n � 1
CONFIGURATION SPACE

In this section, we derive the number An(k1 ,..., kn) of walks (Pi ) i=0,..., K

in the n � 1 configuration space. Note that for sake of simplicity, we note
n instead of D&1. We shall prove that:
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An(k1 ,..., kn)=\ :
1�i< j�n

kikj + !

_ `
1�i< j�n

(K ij+ki&1)![2] (Kij+kj&1)![2]

(Kij+ki+kj&1)![2] (Kij&1)![2] (B.1)

where Kij=2(ki+1+ } } } +k j&1) when i< j.
We give two proofs: a purely algebraic one in the general case, using

results by Stanley, (39) and a combinatorial one.(21) Note that the case where
all the parameters ki are equal to 1 was already treated by Stanley, (39) and
that Edelman and Greene derived a nice combinatorial proof in this
case.(40) We suppose that the notions of Young tableaux and standard
Young tableaux are known.12

But before all, we need to introduce the relation between the tilings
considered in this paper and a class of computer science objects, the so-
called sorting algorithms. This analogy will help the presentation of the
algebraic proof and will be useful in the combinatorial proof.

Appendix B.1. Tilings and Primitive Sorting Algorithms

In the sorting language, a comparator [i; j] acts on a list (x1 , x2 ,..., xn)
of numbers as follows: x i and xj are respectively replaced by min(xi , xj )
and max(xi , xj ). Following Knuth, (42) we call a complete sorting algorithm
a sequence of such comparators which sorts in the increasing order any list
of real numbers (x1 , x2 ,..., xn). This sorting algorithm will be called
primitive if each comparator can be written [i, i+1]. We also suppose that
this algorithm is not redundant, that is to say it does not contain any com-
parator [i, j] that could be suppressed because previous comparators
already insure that xi�xj . Knuth shows that a sequence of comparators is
a sorting algorithm if it correctly sorts the completely reversed list
(n, n&1,..., 1). This means that a complete primitive sorting algorithm is a
sequence of comparators [i, i+1] that transforms the list (n, n&1,..., 1)
into the list (1, 2,..., n).

Such an algorithm can have a diagrammatical representation as follows:
the n variables xi are represented by n horizontal lines. Each comparator
[i, i+1] is represented by a crossing &

&X&
& between lines i and i+1.
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the only constraint that the number of boxes in columns decreases from left to right. The
shape of the tableau is the decreasing sequence of the column heights. A standard Young
tableau of a given shape is simply a numbering of the cells of the tableau by integral num-
bers, running from 1 to the number of cells and increasing in rows and columns. Figure 16
provides examples. For a presentation in relation with the symmetric groups Sn , the reader
can refer to ref. 41.
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Fig. 13. A diagram associated with a sorting algorithm acting on five element lists. A line
follows a number during the sorting process. Each pair of lines cross, only once. The two
circled comparators can be exchanged without changing the corresponding tiling.

Figure 13 illustrates this construction. A continuous line follows a number
during the sorting process. For example, the greatest number is on the top
at the beginning and in the bottom at the end. Since every number must
be compared to every other one, and since there is no redundancy, there
are ( n

2) crossings.
We are now able to establish the link between those algorithms and

n � 2 tilings, more precisely with their de Bruijn representation. Indeed, the
analogy between the diagram of Fig. 13 and a de Bruijn grid with one
line per family is straightforward: each continuous line of the diagram
represents a de Bruijn line and crosses exactly once every other line.

However, there is a fundamental difference between both systems:
different sorting algorithms can represent the same de Bruijn grid since
only the crossing topology is meaningful. For example, in Fig. 13, the fourth
and the fifth comparator (i.e., refs. 4, 5 and refs. 2, 3) are applied in this
order (these comparator are circled in the figure). If they were applied in
the reverse ordre, the algorithm would be different whereas the de Bruijn
grid would be the same.

Therefore we are led to define equivalence classes of sorting algo-
rithms.(42, 28) We say that two comparators [i, i+1] and [ j, j+1] com-
mute if |i& j |>1. Two algorithms are equivalent if they differ by a finite
number a comparator commutations. These equivalence classes of n-ele-
ment sorting algorithms are in one-to-one correspondence with n-family
grids with one line per family, and therefore with tilings inscribed in
polygons of side 1. The number An of equivalent classes has been computed
by Stanley(39) (see also Edelman and Greene(40)) and is given by Eq. (B.1)
in the case where ki=1 for all i:

An(1, 1,..., 1)=
\n

2+ !

1n&13n&2 } } } (2n&3)1 (B.2)

We need to generalize this point of view to systems with more than
one line per de Bruijn family, which leads to the definition of partial sorting
algorithms. These algorithms are related to pre-sorted lists of numbers.
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Fig. 14. A partial sorting algorithm in the case of n=3 families, containing respectively
k1=3, k2=1 and k3=2 pre-sorted elements. The sequence w0 appears vertically on the left
of the figure.

Indeed, let us suppose that we have n families of ki numbers each
(i=1,..., n), and that in each family, the numbers are already pre-sorted in
the increasing order. Then we are interested in the algorithms which order
the whole set of these numbers in the increasing order. We call them partial
sorting algorithms. The ideas are essentially the same as in the previous
case, except that, since the numbers of a given family are already ordered,
the corresponding lines do not need to cross. The corresponding diagram
is similar to a de Bruijn grid with n families of lines, ki lines in each family.
The tilings are equivalence classes of such algorithms. They are inscribed in
polygons of sides k1 ,..., kn .

In the partial sorting case, the reference list to be reversed is not
(n, n&1,..., 1) any longer but a list w0 were some elements are already
sorted. If }i=k1+k2+ } } } +ki , then

w0=(}n&1+1,..., }n&1+kn , }n&2+1,..., }n&2+kn&1,..., 1, 2,..., k1) (B.3)

There are n pre-sorted blocks of ki elements each. An example is provided
in Fig. 14.

Note also that a sorting algorithm can be seen as an ordering (or a
labeling) of the comparators of the corresponding equivalence class, since
the comparators come in a natural order: the labels are increasing on each
de Bruijn line, from left to right. As a consequence, sorting algorithms are in
one-to-one correspondence with labeling of tilings, as defined in Section 3.2
or Appendix A. This point is striking when comparing Figs. 12 and 14.
Therefore the sums of the coefficients aj of a D � 2 problem is equal to
the number of partial sorting algorithms of the suitable pre-sorted D&1
families of variables. This point will be helpful in the following section.

Appendix B.2. Walks and Symmetric Groups Sn

(Algebraic Proof )

The main result used in this section is a theorem by Stanley
(Theorem 4.1 of ref. 39, and its Corollary 4.2). We first need to expose
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these results and to translate them in terms of our notations and defini-
tions. It is the object of the first paragraph. Then, using the above equiv-
alence between coefficients aj and partial sorts, we shall apply Stanley's
theorem to the case of interest here, and derive relation B.1.

Appendix B.2.1. Stanley 's Theorem

The symmetric group Sn of permutations on n elements is generated
by the transpositions _i=(i, i+1): any permutation w can be decomposed
in products of transpositions. A decomposition is said to be minimal if,
using the relations between the generators _ i :

_2
i =1 and _i _i+1_i=_i+1 _i_i+1 (B.4)

it cannot be simplified into a shortest decomposition; then all the reduced
decomposition of w have the same length,13 denoted by l(w). If w=
( 1

a1

2
a2

} } }
} } }

n
an

), we define

ri (w)=Card[ j : j<i and aj>ai ] (B.5)

si (w)=Card[ j : j>i and aj<ai ] (B.6)

Then *(w) is the sequence obtained by arranging the numbers ri (w) in
descending order (and ignoring any 0's); +(w) is the conjugate14 to the
sequence obtained by arranging the numbers si (w) in descending order.

Stanley(39) states that: if *(w)=+(w), then the number of reduced
decompositions of w is equal to the number f *(w) of standard Young tableaux
of shape *(w).

Appendix B.2.2. Application to Walks in n � 1 Configuration Spaces

We still denote by w0 the permutation as defined in the previous section.
The idea is to see each comparator [i, i+1] as a generator _i=(i, i+1) of
a reduced decomposition and to identify a sorting algorithm with a
reduced decomposition of w0 . More precisely, the set of comparators can
be seen as the generators of a group, and they obey the same relations as
the _i : they satisfy relations B.4, and [i, i+1] and [ j, j+1] commute
if |i& j |>1. Finally, the non-redundant character of sorts is equivalent
to the reduced character of decompositions. As a consequence, the number
An(k1 ,..., kn) of partial sorts is equal to the number of reduced decomposi-
tions of w0 .
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Now, in order to apply Stanley's statement, we must compute the
quantities *(w0) and +(w0), as defined in ref. 39: in the present case, one
gets

ri (w0)=kn+ } } } +kj if kn+ } } } +kj+1�i�kn+ } } } +kj&1 (B.7)

si (w0)=}j&1 if kn+ } } } +kj+1�i�kn+ } } } +kj&1 (B.8)

Thus

*(w0)=+(w0)=(kn+ } } } +k2

k1 times

, kn+ } } } +k3

k2 times

,..., kn

kn&1 times

) (B.9)

and Stanley's theorem applies. The Young tableau of shape *(w0) is
represented in Fig. 15. Such a tableau will be called a block tableau of size
(k1 , k2 ,..., kn) in the following. The number An(k1 , k2 ,..., kn) of reduced
decompositions of w0 is equal to the number f *(w0) of standard Young
tableaux of shape *(w0). This number can be derived from Young's
hook-length formula:(43, 44) given a shape *, the hook associated with a given
cell c of the tableau is the set of cells above and at the right of c, including
c itself (Fig. 16). It is denoted by Hc . The hook length hc is the number of
cells in Hc . Then the number f * of standard Young tableaux of shape * is:

f *=
N !

>c hc
(B.10)

where N is the total number of cells and the product runs over all cells.

Fig. 15. A Young tableau of shape *(w0)=+(w0). The numbers ki denote the number of
rows and columns in each rectangular block. Such a tableau is called a block tableau of size
(k1 , k2 ,..., kn).
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Fig. 16. Left: a four-column Young tableau of shape *=(5, 3, 1, 1). Middle: an associated
standard tableau. The hook corresponding to the circled entry is represented. Its length is
hc=5. The hook rank of this cell is rc=1 and its hook height is %c=4: this tableau is not
balanced. Right: a balanced stair tableau of order 5.

This hook-length formula can know be applied to the above tableau:
the hook-length of the cell in the upper right corner of block ki_kj is
Kij+1, from which one deduces all the hook-lengths on the block and their
product:

(Kij+ki+kj&1)![2] (Kij&1)![2]

(Kij+ki&1)![2] (Kij+kj&1)![2]

Moreover, N=�i< j kikj , from which Eq. (B.1) follows.

Appendix B.3. Combinatorial Proof

In this section, we provide a combinatorial bijective proof of the
previous result.(21) This proof follows the same scheme as the proof by
Edelman and Greene(40) in the case where all the parameters ki are equal
to 1. We need first to introduce the notion of balanced tableaux.(40)

We consider a Young tableau, together with a labeling of its cells,
running from 1 to the number of cells, K. Note that now this tableau is not
necessarily standard, that is to say the labels are not necessarily ordered in
each row and in each column. Given a cell c and its hook Hc , we define
the hook rank rc of c as the number of cells of Hc whose labels are smaller
or equal to the label of c. We also define the hook height %i as the number
of cells above c (including c itself ). The tableau is said to be balanced if for
all cells c, rc=%c (see Fig. 16).

At last, a tableau of shape (n&1, n&2,..., 1) (Fig. 16, right) will be
called a stair tableau (of order n). Note that a stair tableau is a particular
case of block tableau, as defined in the previous section.

In the case ki=1, the situation is as follows: Edelman and Greene
build a bijection between complete sorting algorithms on n elements and
balanced block tableaux of order n and then a bijection between those
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balanced tableaux and standard tableaux of order n, which are then
enumerated via the hook-length formula. In the following, we use and
generalize these results to the case of partial sorts. In fact, in ref. 40, the
authors also establish the bijection between balanced tableaux of any shape
and standard tableaux of the same shape. As a consequence, we only need
to generalize the first bijection between partial sorting algorithms on n
families containing ki elements each and balanced block tableaux of size
(k1 ,..., kn), as in Fig. 15. Once this correspondence is established, the rest of
the proof is based upon the hook-length formula, as in the previous
algebraic proof. The rest of the section is devoted to this correspondence.

To begin with, let us consider a complete sorting algorithm on n lines:
it is a sequence of crossings between de Bruijn lines. These crossings are
labeled by integers running from 1 to K=( n

2), from left to right. Following
Edelman and Greene, the intersection label of two lines indexed by a and
b is denoted by tab . In the stair tableau, this number is written in the cell
situated on the a th column and on the (n&b+1)th line (starting from the
bottom): in Fig. 16 (right), the so-obtained tableau corresponding to the
complete sorting algorithm of Fig. 13 is represented. Then it can be
proven(40) that this tableau is balanced and more precisely that this con-
struction establishes a bijection between both classes of objects.

Let us now focus on partial sorting algorithms. Since there are couples
of de Bruijn lines which do not intersect, it is rather natural to consider
block tableaux, which are stair tableaux where some cells are missing.
More precisely, we will consider partial sorting algorithms and block

Fig. 17. Amputation of a stair tableau.
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Fig. 18. A canonical complete sort and the corresponding canonical stair tableau.

tableaux as amputated complete sorting algorithms and amputated stair
tableaux, respectively. The idea is to define canonical amputations in order
to preserve Edelman and Greene's bijection between amputated objects, as
discussed below.

Figure 17 illustrates the tableau amputation process: given n integers
k1 ,..., kn and a stair tableau of order N=� ki , n small stair tableaux of
order ki are removed from the large one in order to get a block tableau of
size (k1 ,..., kn).

As far as the amputation of sorting algorithms is concerned, we first
need to define canonical complete sorts: the simplest way to characterize
them is by their corresponding stair tableaux, the cells of which are increas-
ing from left to right and from bottom to top, as illustrated in Fig. 18. They
are usually referred as ``bubble-sorts'' in the literature.

If we consider now a partial sorting algorithm with ki elements in each
family, it can be canonically transformed into a complete sort: we simply
add n canonical complete sorts on ki elements at its end, as in Fig. 19.
These sorts appear in the order of their indices i. The so-obtained sort is
very particular since it ends with n canonical sorts. Therefore it will be
called a sequential complete sort of order (k1 ,..., kn). By construction, there
is a one-to-one correspondence between sequential complete sorts of order
(k1 ,..., kn) and partial sorts of the same size.

Let us now characterize the structure of the Young tableau { associated
with such a sequential sort. The ( k1

2 )+( k2
2 )+ } } } +( kn

2 ) last intersections in

Fig. 19. A complete sequential sorting algorithm: it is a partial sorting algorithm followed
by n canonical complete sorts on ki elements.
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the sort are those appearing in the n canonical complete sorts. It is easily
checked that the corresponding labels in the large stair tableau appear in
the n small canonical stair tableaux involved in the amputation process. As
a consequence, the labels of the amputated tableau run from 1 to K, where
K is its number of cells. These labels code the K intersections of the partial
sort remaining of the original sequential complete sorting algorithm.

To sum up, as it is illustrated in Fig. 20 starting from partial sorts, we
biunivocally construct complete sequential sorts, then balanced tableaux,
the K last labels of which are situated in the n stair sub-tableaux. When
these sub-tableaux are removed from the large one, we obtain a class of
block tableaux of size (k1 ,..., kn), which will be called pre-balanced tableaux.
Remember now that are goal is to establish a bijection between partial
sorts and balanced block tableaux. Thus we need to construct a bijection
(denoted by R in Fig. 20) between those pre-balanced tableaux of size
(k1 ,..., kn) and balanced block tableaux of the same size.

Bijection R. Actually, R is an involution: in each group of ki

columns, it inverses the order of columns; for example, the first column
becomes the k1th one, the second one becomes the (k1&1)th one and so
on. Likewise, the (k1+1)th column becomes the (k2&1)th one. There is a
rather deep reason for such a column permutation: the n canonical complete

Fig. 20. Sequence of bijections establishing the one-to-one correspondence between partial
sorting algorithms on n families with ki numbers each and balanced block tableaux of size
(k1 ,..., kn). In the lower right stair tableau, the grayed sub-tableau is a pre-balanced block one.
The bijection R puts such tableaux in one-to-one correspondence with balanced block
tableaux of the same shape.
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sorts added at the end of a partial sort in order to make it complete also
reverse the order of lines in each group of ki lines. The role of R is to keep
track of this fact. It is now a rather technical task to prove that R provides
balanced tableaux and that it is a bijective map.

We shall temporarily admit the following results which will be proven
at the end of this section: in a pre-balanced tableau, in each block ki_kj ,
the labels are decreasing in each line and column (from bottom to top); in
a balanced block tableau, they are increasing in lines and decreasing in
columns in such a block.

Consider a pre-balanced block tableau and in this tableau a hook Hc

associated with the cell c situated in the block ki_kj , and in this block in
the line u (from bottom to top) and column v (1�u�ki and 1�v�kj ).
This hook comes from a larger one, H$c , in the stair tableau which has been
amputated. In the process the hook has lost C cells, C1 on its right and C2

on its top (see Fig. 21). Thus the height of Hc is equal to

%c=%$c&C2

On the other hand, all the lost cells, coming from the n removed stair
tableaux, had labels larger than the label of the cell c. As a consequence,
the hook rank remains unchanged:

rc=r$c

Fig. 21. A hook Hc of a pre-balanced tableau. As compared to the original hook H$c (before
the amputation), it has lost cells on its top and on its right (dashed). By the involution R,
c receives the label of the cell c0.
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Now, R permutes the labels of the block tableau but does not change
its shape. In the process, the cell c receives the label of the cell c0 still
situated in the line u, but in the column kj&v+1.

For a given quantity A assigned to each cell, we denote by A0 the
value of this quantity for the cell c0 in the pre-balanced tableau, and AR its
value in its image by R. In particular, %R

c =%0
c , and we have just proven

that r0
c&%0

c=C 0
2 . Moreover, rR

c =r0
c&(kj&v0). Indeed, by R, the hook Hc

receives the labels of the hook Hc0
outside the block ki_k j ; and in the

block, the labels, which were decreasing in the line u of the pre-balanced
tableau, are increasing in its image by R. As a consequence,

rR
c &%R

c =C 0
2&(kj&v0)

Now C 0
2=(k j&v0) by definition. Therefore rR

c =%R
c and the tableau is

balanced. Conversely, given a balanced tableau, since the labels are increas-
ing in each line of each block, one proves that its image by the involution
R is pre-balanced. We have established the bijection.

We need to prove the two above assertions about the order of labels
in blocks of balanced and pre-balanced tableaux. We only give sketches of
the proofs. As far as pre-balanced tableaux are concerned, the proof is
rather straightforward: a block ki_kj contains labels associated with all
the intersections of two families of lines. If those lines are isolated from the
rest of the tiling, it becomes clear that the order in which intersections
occur is constrained. For balanced tableau, the proof is more complex. The
basic idea is to construct a proof by ``planar induction:'' we prove that if
a suitable P property is true for cells above and at the right of a given cell c,
then it is also true for c. Then if P is true for cells on the upper right
corners of the tableau, it will be true for every cell. In the present case, if
tc still denotes the label of the cell c, then the property reads:

P(c): in the block ki_kj to which c belongs, the cells above c have labels
smaller than tc , while the cells at its right have labels greater than tc .

A proper use of the balanced character of a block tableau proves that it
satisfies the above planar induction principle.

APPENDIX C. PROOFS OF SECTION 4

In this appendix, we only give sketches of proofs for the results used
in Section 4. The complete proofs can be found in the relevant references.

Appendix C.1. Elnitsky's Formulas

In order to prove relations 6 and 7, we need, in the octagonal case,
a slightly different representation of de Bruijn grids than those presented in
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Fig. 22. Two lattice-path diagrams, associated with the two tilings of Fig. 11. The de Bruijn
lines of the two single-line families are represented by a pair of paths running on a square
lattice. These paths go from one corner to the diagonally opposite one. In case of ambiguity,
the vertex where the de Bruijn lines intersect is distinguished by a circle. There are two cases:
either the two sides of length one of the polygonal boundary are consecutive (right) or not
(left).

the introductory section: as displayed in Fig. 22, the lines of the two first
families form a square lattice (of sides r and s in this case), on which the
lines of the third and fourth de Bruijn families run: they are represented by
directed walks on the lattice, going from one corner to the diagonally
opposite one. According to whether the two sides of length one are adja-
cent or not, the two paths have the same starting and ending points (right)
or not (left). In this representation, the de Bruijn line intersections must be
distinguished to avoid possible ambiguities due to path tangency (it will be
called the distinguished vertex in the following). For example, the octagonal
tilings of Fig. 11 are represented by the pair of paths of Fig. 22.

The proof of relation 6 is now straightforward: if (a, b) are the coor-
dinates of the distinguished vertex in the grid, then the number of con-
figurations is the product of the 4 number of choices for the four pieces of
paths going from (a, b) to the four corners, that is the product of four
binomial coefficients. Now summing over all (a, b) configurations one gets
relation 6.

The proof of relation 7 is a little more complex and involves some
modifications of the pair of paths, as usual in this kind of calculation. The
idea is to exchange the two paths after the distinguished vertex, in order to
get non-crossing (but possibly touching) paths, and then to shift some
parts of those paths in order to get a non-touching pair. The latter pairs
can be counted with help of the determinental Gessel�Viennot method.(45)

The interested reader will refer to ref. 28 for more details.

Appendix C.2. Brock's Recursion Relation

Let us now focus on the recursion relation 10. We use again the lat-
tice-path representation, as defined in the previous section. Given a pair p
of crossing paths, with no a priori distinguished vertex, let us denote by lp

the length of their intersection (see Fig. 23). Note that this intersection can
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Fig. 23. When the two path intersection is a segment (vertical or horizontal, of length lp>0;
here lp=3), the same pair can represent several tilings, depending on the position of the
distinguished vertex. If this point is not the last possible one (i.e., the point with the highest
coordinates), then a strip of the lattice can be removed (dashed in this figure, at the right of
the black distinguished vertex). The so-obtained diagram is associated with a smaller tiling
(r&1_s in the present case; r_s&1 if the segment were vertical).

be a point (lp=0), a horizontal or a vertical segment (of length lp). If Pr, s

is the set of pairs, then

W 4 � 2
r, 1, s, 1= :

p # Pr, s

lp+1=\r+s
r +

2

+ :
p # Pr, s

lp (C.1)

since there are lp+1 possible choices for the distinguished vertex and there
are ( r+s

r )2 such pairs of paths.
In the case where lp>0, if the distinguished vertex is not the point

with the highest coordinates (lp possibilities), as in Fig. 23, then a vertical
or horizontal strip of the square lattice can be removed without changing
the nature of the diagram: it is the strip of width 1, at the right of (respec-
tively above) the distinguished vertex if the intersection is horizontal
(respectively vertical). As a result, one still have a square lattice (but one
of its side lengths is lowered by 1) with a pair of paths (but the length of
their intersection has been lowered by one in the process). That is why

:
p # Pr, s

lp= :
p # Pr&1, s

(lp+1)+ :
p # Pr, s&1

(lp+1) (C.2)

In conclusion,

W 4 � 2
r, 1, s, 1=\r+s

r +
2

+ :
p # Pr, s

lp

=\r+s
r +

2

+ :
p # Pr&1, s

(lp+1)+ :
p # Pr, s&1

(lp+1)

=\r+s
r +

2

+W 4 � 2
r&1, 1, s, 1+W 4 � 2

r, 1, s&1, 1 (C.3)

which achieves the proof.
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APPENDIX D. WHAT ABOUT THE GENERAL D � d CASE?

In this last appendix, we discuss what we know and what we do not
know about the general D � d case which was more widely studied in
ref. 21. The different points and results tackled in the present paper are
discussed. It will become clear that the possible existence of cycles in the
partition-on-tiling problems is the major obstacle to simple generalizations.

Appendix D.1. Partition-on-Tiling Point of View and
Configuration Space

As far as partitions on tilings are concerned, all that as been said in
the octagonal case can be transposed to the general case: a fixed boundary
D � d tiling(3, 21) can be coded in a single way as a partition on a D&1 � d
tiling. The de Bruijn lines are still defined as lines joining together the
middles of opposite faces of rhombic tiles, and the parts of those partitions
are still increasing along such lines. The reader can refer to Bailey(23) for a
more formal treatment of this question. Note that in this case, there also
exist de Bruijn families of hyper-surfaces, associated with an edge orientation.

However, as it was suggested in ref. 3, the geometry of configuration
spaces might be more complex beyond the octagonal case. Indeed, among
the order relations xi�xj between the parts of a partition-on-tiling
problem, nothing forbids a priori the existence of cycles of inequalities, such
as xi1

�xi2
� } } } �x iq

�xi1
, which enforces all these variables to be equal.

At least two examples of 6 � 3 tilings (in relation with 7 � 3 tiling
problems) are known which display such cycles. The first one can be found
in ref. 46 (Example 10.4.1) and the second one in ref. 47 (Example 3.5).15 In
these examples, the tilings are defined by their dual de Bruijn grids��which
are families of 2-dimensional de Bruijn surfaces in a 3-dimensional space��
together with an orientation of de Bruijn lines.

When such a cycle exists, all the parts of the cycle have a ``collective
behavior,'' which is not compatible with the previous description: they
behave like a single effective part. In particular, the number of effective
parts in this partition problem, denoted as K$, is strictly smaller than K.
Thus the counting polynomial of this partition problem becomes:

:
M$

j=0

aK$
j \K$+ p& j

K$ + (D.1)
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15 Note that in these references (Proposition 10.5.7 of ref. 46 and Corollary 4.5 of ref. 47), it is
also stated that no such cycles exist in two-dimensional tilings.



The counting polynomial of the whole tiling problem is a sum of such poly-
nomials, with possibly many different K$.

Moreover, the existence of cycles invalidates the proof of the connec-
tivity of the configuration space (Section 2.2). As far as we know, this point
is an open question in the general D � d case. Note however that whenever
one can prove that order relations on fibers contain no cycles, then the
configuration space is connected.

Appendix D.2. Decomposition in Simplices��Descent
Theorem

We prove that the existence of cycles does not alter the previous
results about the sums of coefficients aj and walks in configuration spaces,
provided these objects are suitably defined: if we focus only on coefficients
aK

j associated with configuration spaces of effective dimension K (and not
K$<K ), then the sum �K of these coefficients is equal to the number of
maximal walks in the corresponding D&1 � d&1 configuration space.
Note that this quantity �K still characterizes the leading coefficient of the
counting polynomial (of degree K ) as p goes to infinity.

More precisely, if there exists a cycle in the partition problem on a
membrane, we have just seen that the coefficients aK$

j of this problem do
not contribute to �K. On the other hand, let us consider a step in a walk
in the D&1 � d&1 configuration space: we have seen that the part x
which differentiates the two consecutive configurations of this step is such
that all parts lesser (resp. greater) than x in the graph are equal to 1 (resp. 0).
This part is equal to 0 in a partition and to 1 in the other one. As far as
the parts of the cycle are concerned, since they are all equal, they cannot
but jump from 0 to 1 all together, which is not conform to our definition
of walk in the configuration space, in terms of single elementary flips.
Conversely and for similar reasons, a maximal walk in the configuration
space cannot give a membrane with cycles.

In conclusion, as well �K as the number of walks are not concerned
by partitions with cycles, and the above result remains valid.

Before going on, let us specify what the extremal tilings become in
larger dimension: Cmin and Cmax are defined by partitions where all the
parts are equal to 0 and 1, respectively. Therefore the corresponding tilings
present a faceted aspect, as on Fig. 24. Note that among the different
possible faceted tilings, the two extremal ones depend on how the Dth de
Bruijn family of surfaces is chosen.

At last, we recall that there cannot exist a descent theorem as simple
as the octagonal one in the general case. Indeed, its derivation is closely
related to the existence of a zero-descent simplex in each partition-on-tiling

187Fixed-Boundary Octagonal Random Tilings



File: 822J 008342 . By:XX . Date:02:11:00 . Time:08:24 LOP8M. V8.B. Page 01:01
Codes: 2930 Signs: 2169 . Length: 44 pic 2 pts, 186 mm

Fig. 24. Two examples of extremal 4 � 2 tilings displaying a macroscopic faceting. Such
tilings are extremal configurations for walks associated with a 5 � 3 problem. There are four
similar pairs of faceted tilings which could be chosen as extremal configurations, depending
on how the fourth de Bruijn family is chosen among the four possible ones.

problem, that is to the K-dimensional character of the associated configura-
tion space. But we have shown that this point is not granted in general,
since there can exist partition-on-tiling problems for which the configura-
tion space has a dimension K$ smaller than K.
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